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Motivation

e MapReduce is great
— Hides details of distributed execution
— Simplifies writing distributed tasks

* Democratizes large scale data analysis
— Domain experts (scientists, business analysts, ...)

e Difficult to optimize MapReduce applications
— Skew is one of such challenges



Problem: Skew in PageRank
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Why does it run slow?

 H/W problem =

e Workload interference

—Your friendly neighbor random Joe

Solution: Speculative Execution

But sometimes,
speculative execution fails to solve the
problem!

WE ARE NOT YOUR FRIENDS



Survey of Skew

e Map-side
1. Expensive Record (e.g., PageRank)
2. Heterogeneous Map (e.g., CloudBurst)
3. Non-homomorphic Map (e.g., Friends of Friends)

 Reduce-side
4. Partitioning Skew (e.g., CloudBurst)
5. Expensive Input (e.g., CloudBurst)



Case Study: PageRank
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e Famous link analysis algorithm
— Cast weighted vote along outgoing edges
— Aggregate the votes and update the rank

e MapReduce conversion
— Map: send out fractional PageRank along all out edges
— Reduce: aggregation and update PageRank

Implementation: Cloud 9 — http://www.umiacs.umd.edu/~jimmylin/Cloud9/docs/index.html



http://www.umiacs.umd.edu/~jimmylin/Cloud9/docs/index.html
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e Some records take longer to process

— A large number of outgoing edges

— Yields large output, more spills to disk

Configuration: 32 machines, 32/32 map/reduce slots, 128/128 map/reduce tasks



Skew Type 1: Expensive Record

e Cause

— Some input record is taking longer to process than
others

* Best practice
— Use domain knowledge
 Which record is expensive?

— Pre-process input and partition

* |solate expensive records



Case Study: CloudBurst

Sequence
Reads

Reference
Sequences
e Bioinformatics

— Approximately align genome sequence reads
along known reference sequences*

Similarity string matching Two Input Datasets

Implementation: CloudBurst — http://cloudburst-bio.sourceforge.net



http://www.umiacs.umd.edu/~jimmylin/Cloud9/docs/index.html
http://www.umiacs.umd.edu/~jimmylin/Cloud9/docs/index.html

CloudBurst: Task Runtime
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e Two code paths to process two datasets in map()
 Within a dataset, there is no skew

Configuration: 32 machines, 32/32 map/reduce slots, 160 map tasks, 128 reduce tasks '°



Skew Type 2: Heterogeneous Map

e Cause
— More than one map() function in a job

— Each map() function has different performance
characteristics

e Best practice
— Use domain knowledge
e Determine appropriate # of map tasks per map()

— Pre-process input and partition
* If necessary



CIoudBurst Task Runtime
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e Smooth distribution of task runtime

e Factor of 4 difference between the fastest and
the slowest
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CIoudBurst What S Happemng in Reduce?
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e # of reduce keys e # of input records
— Same number — Factor of 2 difference
— Factor of 4 difference in — Does not account for 4x
runtime difference in runtime!
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Reduce Skews

e Skew Type 4: Partitioning Skew
— Cause: Some reduce tasks receive more input data

 Skew Type 5: Expensive Input Skew
— Cause: Some reduce() take longer than others

* Best Practice
— Use domain knowledge
— Try different partitioning
— Implement combiner



Case Study: Friends of Friends

In-memory spatial index

<ID, (x,y)>
<ID, (x,y)>

Find clusters by

recursively probing index
<ID, (x,y)> Y p¢ &

Output clusters

e Clustering algorithm used by astronomers
— Friend: a point within distance threshold
— Cluster: transitive closure of Friend from seed point
— Requires spatial index for efficient execution
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Friends of Friends: Task Runtime
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Configuration: 32 machines, 32/32 map/reduce slots, 276 map tasks



Skew Type 3: Non-homomorphic Map

e Cause
— The map() processes contiguous blocks of records

— Each map task runtime depends on data value or
distribution

* Best practice
— Use domain knowledge
— Pre-process input and partition
— Redesign algorithm



Summary: Survey of Skew

e Map-side
1. Expensive Record (e.g., PageRank)
2. Heterogeneous Map (e.g., CloudBurst)
3. Non-homomorphic Map (e.g., Friends of Friends)

 Reduce-side
4. Partitioning Skew (e.g., CloudBurst)
5. Expensive Input (e.g., CloudBurst)



[SOCC2010]

SkewReduce

e Can a system automatically derive a good data
partitioning?

 Domain: feature extracting application

— But applicable if the computation could be
hierarchically decomposable

* Optimizer + Runtime

e http://code.google.com/p/skewreduce



http://code.google.com/p/skewreduce

SkewReduce: Approach

Runtime Plan

1

Cost SkewReduce
functions Optimizer
Cluster

configuration

e Goal: minimize expected total runtime

e SkewReduce runtime plan
— Bounding boxes for data partitions
— Schedule 20



Relative Runtime
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Does SkewReduce work?
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 SkewReduce plan yields 2 ~ 8 times faster running time
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[Submitted to SOCC2011]

Future Work: SkewTune

e How far can we automate?

* Analyze a MapReduce application
— Is map/reduce prone to skew?
— Is map/reduce repartitionable?

e Accelerate the slowest task
— Aggressively repartitioning the input data



SkewTune: PageRank
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SkewTune: CloudBurst
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Conclusion

 Grand Vision
— Open-up large-scale data analysis to domain experts

e |n this talk

— Showed skew problems in MapReduce applications
— Our efforts to mitigate the impact of skew

e |f you have an interesting application, please let
us know!
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