A Study of Skew in MapReduce Applications

YongChul Kwon

Magdalena Balazinska, Bill Howe, Jerome Rolia*

University of Washington, *HP Labs

Motivation

- MapReduce is great
 - Hides details of distributed execution
 - Simplifies writing distributed tasks
- Democratizes large scale data analysis
 - Domain experts (scientists, business analysts, ...)
- Difficult to optimize MapReduce applications
 - Skew is one of such challenges

Problem: Skew in PageRank

Why does it run slow?

H/W problem

- Workload interference
 - -Your friendly neighbor random Joe

Solution: Speculative Execution

Survey of Skew

- Map-side
 - 1. Expensive Record (e.g., PageRank)
 - 2. Heterogeneous Map (e.g., CloudBurst)
 - 3. Non-homomorphic Map (e.g., Friends of Friends)

- Reduce-side
 - 4. Partitioning Skew (e.g., CloudBurst)
 - 5. Expensive Input (e.g., CloudBurst)

Case Study: PageRank

- Famous link analysis algorithm
 - Cast weighted vote along outgoing edges
 - Aggregate the votes and update the rank
- MapReduce conversion
 - Map: send out fractional PageRank along all out edges
 - Reduce: aggregation and update PageRank

PageRank: Task Runtime

- Some records take longer to process
 - A large number of outgoing edges
 - Yields large output, more spills to disk

Skew Type 1: Expensive Record

Cause

Some input record is taking longer to process than others

Best practice

- Use domain knowledge
 - Which record is expensive?
- Pre-process input and partition
 - Isolate expensive records

Case Study: CloudBurst

— Approximately align genome sequence reads along known reference sequences

Similarity string matching

Two Input Datasets

Implementation: CloudBurst - http://cloudburst-bio.sourceforge.net

CloudBurst: Task Runtime

- Two code paths to process two datasets in map()
- Within a dataset, there is no skew

Skew Type 2: Heterogeneous Map

Cause

- More than one map() function in a job
- Each map() function has different performance characteristics

Best practice

- Use domain knowledge
 - Determine appropriate # of map tasks per map()
- Pre-process input and partition
 - If necessary

CloudBurst: Task Runtime

- Smooth distribution of task runtime
- Factor of 4 difference between the fastest and the slowest

CloudBurst: What's Happening in Reduce?

- # of reduce keys
 - Same number
 - Factor of 4 difference in runtime
- # of input records
 - Factor of 2 difference
 - <u>Does not account for 4x</u> <u>difference in runtime!</u>

Reduce Skews

- Skew Type 4: Partitioning Skew
 - Cause: Some reduce tasks receive more input data
- Skew Type 5: Expensive Input Skew
 - Cause: Some reduce() take longer than others

- Best Practice
 - Use domain knowledge
 - Try different partitioning
 - Implement combiner

Case Study: Friends of Friends

- Clustering algorithm used by astronomers
 - Friend: a point within distance threshold
 - Cluster: transitive closure of Friend from seed point
 - Requires spatial index for efficient execution

Friends of Friends: Task Runtime

- No previous types of skew
 - Same amount of data
 - No expensive record
 - No heterogeneity

O(N log N)

Skew Type 3: Non-homomorphic Map

Cause

- The map() processes contiguous blocks of records
- Each map task runtime depends on data value or distribution

Best practice

- Use domain knowledge
- Pre-process input and partition
- Redesign algorithm

Summary: Survey of Skew

- Map-side
 - 1. Expensive Record (e.g., PageRank)
 - 2. Heterogeneous Map (e.g., CloudBurst)
 - 3. Non-homomorphic Map (e.g., Friends of Friends)

- Reduce-side
 - 4. Partitioning Skew (e.g., CloudBurst)
 - 5. Expensive Input (e.g., CloudBurst)

[SOCC2010]

SkewReduce

- Can a system automatically derive a good data partitioning?
- Domain: feature extracting application
 - But applicable if the computation could be hierarchically decomposable
- Optimizer + Runtime
- http://code.google.com/p/skewreduce

SkewReduce: Approach

- **Goal**: minimize expected total runtime
- SkewReduce runtime plan
 - Bounding boxes for data partitions
 - Schedule

Does SkewReduce work?

• SkewReduce plan yields 2 ~ 8 times faster running time

[Submitted to SOCC2011]

Future Work: SkewTune

How far can we automate?

- Analyze a MapReduce application
 - Is map/reduce prone to skew?
 - Is map/reduce repartitionable?

- Accelerate the slowest task
 - Aggressively repartitioning the input data

SkewTune: PageRank

SkewTune: CloudBurst

Conclusion

- Grand Vision
 - Open-up large-scale data analysis to domain experts
- In this talk
 - Showed skew problems in MapReduce applications
 - Our efforts to mitigate the impact of skew
- If you have an interesting application, please let us know!