A Study of Skew in MapReduce
Applications

YongChul Kwon
Magdalena Balazinska, Bill Howe, Jerome Rolia*

University of Washington, *HP Labs w

Motivation

e MapReduce is great
— Hides details of distributed execution
— Simplifies writing distributed tasks

* Democratizes large scale data analysis
— Domain experts (scientists, business analysts, ...)

e Difficult to optimize MapReduce applications
— Skew is one of such challenges

Problem: Skew in PageRank

Time (seconds)

0 50 100 150 200 250 300 350
OSkew Shuffle
W Sort
Ideal B Map
; ompletion B Reduce
-
wvy
i

Why does it run slow?

 H/W problem =

e Workload interference

—Your friendly neighbor random Joe

Solution: Speculative Execution

But sometimes,
speculative execution fails to solve the
problem!

WE ARE NOT YOUR FRIENDS

Survey of Skew

e Map-side
1. Expensive Record (e.g., PageRank)
2. Heterogeneous Map (e.g., CloudBurst)
3. Non-homomorphic Map (e.g., Friends of Friends)

 Reduce-side
4. Partitioning Skew (e.g., CloudBurst)
5. Expensive Input (e.g., CloudBurst)

Case Study: PageRank

~._0.5
033"~

P2
‘ /"1 05+033+1

=1.83

0.33

0.33

e Famous link analysis algorithm
— Cast weighted vote along outgoing edges
— Aggregate the votes and update the rank

e MapReduce conversion
— Map: send out fractional PageRank along all out edges
— Reduce: aggregation and update PageRank

Implementation: Cloud 9 — http://www.umiacs.umd.edu/~jimmylin/Cloud9/docs/index.html

http://www.umiacs.umd.edu/~jimmylin/Cloud9/docs/index.html

[
un
o

Runtime (seconds)

Rank

0 20 40 60 80 100 120 140

PageRank Task Runtime

25

N
o

[
U

Runtime (seconds)

19)]

0 |

o

[
=

2

!

40

REDUCE

60 80 100 120 140
Rank

e Some records take longer to process

— A large number of outgoing edges

— Yields large output, more spills to disk

Configuration: 32 machines, 32/32 map/reduce slots, 128/128 map/reduce tasks

Skew Type 1: Expensive Record

e Cause

— Some input record is taking longer to process than
others

* Best practice
— Use domain knowledge
 Which record is expensive?

— Pre-process input and partition

* |solate expensive records

Case Study: CloudBurst

Sequence
Reads

Reference
Sequences
e Bioinformatics

— Approximately align genome sequence reads
along known reference sequences*

Similarity string matching Two Input Datasets

Implementation: CloudBurst — http://cloudburst-bio.sourceforge.net

http://www.umiacs.umd.edu/~jimmylin/Cloud9/docs/index.html
http://www.umiacs.umd.edu/~jimmylin/Cloud9/docs/index.html

CloudBurst: Task Runtime

MAP
| Reference (]
c L
E |
<150
L
£
‘€ 100
= N U

500 it REAAS
0 [IJI||I||I|||I|||I||||I||||.||||Z||||Z||||Z|||||Z||||J|||I|||I|||I]||Il|l||I||II|I||l||||[|||||||||.||||i|‘.

0 20 40 60 80 100120140160 180
Rank

e Two code paths to process two datasets in map()
 Within a dataset, there is no skew

Configuration: 32 machines, 32/32 map/reduce slots, 160 map tasks, 128 reduce tasks '°

Skew Type 2: Heterogeneous Map

e Cause
— More than one map() function in a job

— Each map() function has different performance
characteristics

e Best practice
— Use domain knowledge
e Determine appropriate # of map tasks per map()

— Pre-process input and partition
* If necessary

CIoudBurst Task Runtime

30000

MAP ' ~ REDUCE]

20000{CHETETIE1IICE. |

% 20 40 60 80 100 120 140 160 180 2040 G%anfo 100 120 140

3010
1l

e Smooth distribution of task runtime

e Factor of 4 difference between the fastest and
the slowest

12

CIoudBurst What S Happemng in Reduce?

_Wm ©ecmom e o0 % . % 5000
R R |, ny
S Same # of groups 34000 - gﬂwg,w’ -9
O 100 T e s ¢ oo o
2 but dlfferent runtlmes “ ~N S,]
S Y | e s s S Se———" Egggg_.........:..@...
g | #* IR
% A A S B 52000 = i
T R e e 3 ; ax
|9 S IS T T N T N E 1000 R
% 5 150 155 250 255 ?jo 35 G530 15 30 35 3035
Execution Time (1000 seconds) Execution Time (1000 seconds)
e # of reduce keys e # of input records
— Same number — Factor of 2 difference
— Factor of 4 difference in — Does not account for 4x
runtime difference in runtime!

13

Reduce Skews

e Skew Type 4: Partitioning Skew
— Cause: Some reduce tasks receive more input data

 Skew Type 5: Expensive Input Skew
— Cause: Some reduce() take longer than others

* Best Practice
— Use domain knowledge
— Try different partitioning
— Implement combiner

Case Study: Friends of Friends

In-memory spatial index

<ID, (x,y)>
<ID, (x,y)>

Find clusters by

recursively probing index
<ID, (x,y)> Y p¢ &

Output clusters

e Clustering algorithm used by astronomers
— Friend: a point within distance threshold
— Cluster: transitive closure of Friend from seed point
— Requires spatial index for efficient execution

15

Friends of Friends: Task Runtime

60000
* No previous types of skew >
€ 40000
— Same amount of data g
] E’BDUDD
— No expensive record £
S 20000
— No heterogeneity 10000

0 50 100 150 200 250 300
() (<] Rank

® Q@
o ~ O(N?)

Data O O(N log N)
16

Configuration: 32 machines, 32/32 map/reduce slots, 276 map tasks

Skew Type 3: Non-homomorphic Map

e Cause
— The map() processes contiguous blocks of records

— Each map task runtime depends on data value or
distribution

* Best practice
— Use domain knowledge
— Pre-process input and partition
— Redesign algorithm

Summary: Survey of Skew

e Map-side
1. Expensive Record (e.g., PageRank)
2. Heterogeneous Map (e.g., CloudBurst)
3. Non-homomorphic Map (e.g., Friends of Friends)

 Reduce-side
4. Partitioning Skew (e.g., CloudBurst)
5. Expensive Input (e.g., CloudBurst)

[SOCC2010]

SkewReduce

e Can a system automatically derive a good data
partitioning?

 Domain: feature extracting application

— But applicable if the computation could be
hierarchically decomposable

* Optimizer + Runtime

e http://code.google.com/p/skewreduce

http://code.google.com/p/skewreduce

SkewReduce: Approach

Runtime Plan

1

Cost SkewReduce
functions Optimizer
Cluster

configuration

e Goal: minimize expected total runtime

e SkewReduce runtime plan
— Bounding boxes for data partitions
— Schedule 20

Relative Runtime

(=Y

Does SkewReduce work?

o Iw B Astro (18 GB, 3D) & Seaflow (1.9 GB, 3D)
8
7
6
5
4
3 .
X 1 hour preparation
1 :l -
0 -
128MB | 16 MB mmm SkewReduce
14.1 Hours
87.2 63.1 77.7 98.7 - 14.1 Minutes

 SkewReduce plan yields 2 ~ 8 times faster running time

21

[Submitted to SOCC2011]

Future Work: SkewTune

e How far can we automate?

* Analyze a MapReduce application
— Is map/reduce prone to skew?
— Is map/reduce repartitionable?

e Accelerate the slowest task
— Aggressively repartitioning the input data

SkewTune: PageRank

1400

1200

[y
o
o
o

800
- Reduce

600

Shuffle

Runtime (seconds)

400 “ Map

200

PageRank SkewTune PageRank SkewTune

Default Worst data

23

SkewTune: CloudBurst

100000
10000 |
m |
e f
c
§ 1000 -
2, - Reduce
)
E 100 i Shuffle
=
e “ Map
10 -
1 ol
CloudBurst | SkewTune | CloudBurst | SkewTune
Default Misconfigured

24

Conclusion

 Grand Vision
— Open-up large-scale data analysis to domain experts

e |n this talk

— Showed skew problems in MapReduce applications
— Our efforts to mitigate the impact of skew

e |f you have an interesting application, please let
us know!

	A Study of Skew in MapReduce Applications
	Motivation
	Problem: Skew in PageRank
	Why does it run slow?
	Survey of Skew
	Case Study: PageRank
	PageRank: Task Runtime
	Skew Type 1: Expensive Record
	Case Study: CloudBurst
	CloudBurst: Task Runtime
	Skew Type 2: Heterogeneous Map
	CloudBurst: Task Runtime
	CloudBurst: What’s Happening in Reduce?
	Reduce Skews
	Case Study: Friends of Friends
	Friends of Friends: Task Runtime
	Skew Type 3: Non-homomorphic Map
	Summary: Survey of Skew
	SkewReduce
	SkewReduce: Approach
	Does SkewReduce work?
	Future Work: SkewTune
	SkewTune: PageRank
	SkewTune: CloudBurst
	Conclusion

